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ABSTRACT ‘~~\ -
• 

This paper analyzes mixed methods for the biharmonic problem by

means of new families of mesh dependent norms which are introduced and

studied. More specifically , several mixed methods are shown to be stable

with respect to these norms and, as a consequence, error estimates are

obtained in a simple and direct manner.

AMS(MOS) Subject Classification : 65N15, 65N30

Key Words mixed methods, error estimates, stability

~ Work Unit Number 7 - Numerical Analysis

~ ~&biic ~~~~~

tlnstitute for Physical Science and Technology and Department of Mathematics,
University of Maryland , College Park.
tflepartment of Mathematics, University of Maryland, College Park.

Institute of Mathematics, Helsinki University of Technology, Helsinki, Finland .

Sponsored by the United States Army under Contract No. DAAG29-75—c-0024. This
• material is based upon work supported by the National Science Foundation under

Grant MCS78-028S1 and the Department of Energy under Contract No. E (40-1)3443 .

- - . • - - . -



_ _ _  • 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r ~ 

- -
~~~~

•

_ _ _  _ _ _ _ _ _ _ _  ___—- ______

SIGNIFICANCE AND EXPLANATION

This paper presents a new approach to the analysis of mixed methods for

the approx imate solution of 4th order elliptic boundar~ value problems. In

• this approach one introduces a pair of mesh dependent norms and proves the

approximation method is stable with respect to these norms . The error esti-

mates then follow in a direct manner. In a mixed method , one introduces an

auxiliary variable , usually representing another physically important quantity ,

and writes the differential equation as a lower order system. One then con-

siders Ritz-Galerkin approximation schemes based on a variational formulation

- of this lower order system, thereby obtaining direct approximations to both

the original and auxiliary variables. Three particular mixed methods for the

approximate solution of the biharmonic problem are examined in detail.
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ANALYSIS OF MIXED METWY)S USI~IG
MESH DtPENDEN’T ~~RMS

I. Babu~Jca~ , J . Osborn~ , and 3.  pitkUranta~

1. Introduction

In (51 Brezzi studied Ritz—Galerkin approximation of saddle point problems ar is ~~~-~

in connection with Lagrange multipliers. These problems have the form:

Given f ~ V’ and g ~ • find (u ,q,) ~ V x (V satisfying

a(u,v) + b(v qi) (f,v) V v ~ V
(1.1)

b(u ,~ ) (g,~p) V ~ e LV

where V and LV are real Hu bert spaces and a(•,) and b(’,~ ) are bounded

bilinear forms on V x V and V x W • respectively.

Given finite dimensional spaces V~ c V and Wh 
C (V, indexed by the parameter C~ - h — 1 ,

the Ritz—Galerkin approximation (U
h~~*h

1 to (u,~i) is defined as the solution of t~
problem:

• Find (uh.4’.~
) e x satisfying

~ 
a(u~,, V) + b(v.~~) (f,v) V v 

~ 
Vh

(1.2)

I b(u
h
,IP) (g,~) v I~ € .

The major assumptions in Erezzi’s results are

(1.3) sup J~~~.!1.L- > Y0IIu~I~ V U € Zh and V h
V E Z h V

where 
~~~~ 

> 0 is independent of h • and Z
h ~ 

{v € Vh:b(v.~
) = 0 V ~ -

~ 
wh}. and

(1.4) sup I b (v ,v’ ) I  
> k

0ft~ lI~ V ~ € and V h
V

where k
0 

> 0 is independent of h . Using (1.3) and (1.4) Brezzi proves the followinq

error estimate for the approximation method determined by (1.2):

(1.5) U U U.~il y + “*~*~‘w .~ C (infUu—xll~~+ infH i—nII~ ) V h.
XEVhwhere C is independent of h
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In (1,2) BabuSka studied Ritz—Galerkin approximation of general , variationally

posed problems. The main result of rl,23, as applied to (1.1) and (1.2), is that (1.5) holds

provided

(1.6) 
(V.~

)EV h~
Wh 

la (u ,v) + b(v,*) + b (n , €~j  > 
~0

(II WI v + il d4~ ) V(u,(~) € Vh x and V h,

where > 0 is independent of h . It is clear fron 11,2] that (1.3) and (1.4) hold if

and only if (1.6) holds. (l.3)—(L.4) or, equivalently, (1.6) is referred to as the sta—

• bjlity condition for this approximation method.

The results of (1,2,5] can be viewed as a stratagy for analyzing such approximation

methods: the approximation method is characterized by certain bilinear forms, norms (spaces),

and families of finite dimensional approximation spaces, and if the method can be shown to

• be stable with respect to the chosen norms, then the error estimates in these norms follow

directly, provided the bilinear forms are bounded and the approximation properties of V
h

and W
h are Jcnown in these norms. These results can be used to analyze.for exemple, certain

hybrid methods for the biharmonic problem t5,61 . The results of (1,2] have also been used

to analyze a variety of variationally posed problems thet do not have the form (1.1).

There are other problems of a similar nature, however , where attempts at using the

results of (1,2,5] were not entirely successful since not all of the hypotheses were satis-

fied: specifically , the Brezzi condition (1.3) or, equivalently, the BabuEka condition

(1.6), is not satisfied with the usual choice of norms, i.e., the approximation methods

for these problems are not stable with respect to the usual choice of norms. This is the

case, for example, in the analysis (71 of the Herrmann—Miyoshi (15 ,16,20) mixed method for

the biharmonic problem. In the analysis of this method a natural choice for both lI~ II~,

and l( .fl~ is the 1st order Sobolev norm; however, this method is not stable with respect to

this choice of norms. As a result of this difficulty the error estimates obtained in (51

are not optimal. A similar difficulty arises in the analysis of the Herrmann—Johnson (15 ,

16,171 and Ciarlet—Mviart (9] mixed methods for the biharmonic problem. In later work of Schola

(23) and Rannacher (221 optimal error estimates were obtained for the mixed methods of

.arlet-Raviart and Herrrlann—~!1yoshi. In a forthcoming paper Falk—Osborn (121 develop

—2— •
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abstract results from which optimal error estimates for these and other problems can be I- -

derived. However, in neither the work of Scholz 1231 , Rannacher (22 ), or Falk—Osborn

( 12 1 is the systematic approach of Brezzi and Babu~ka used .

It is the purpos. of this paper to analyze mixed methods for the biharmonic problem by means

of the results of Brezzi and Babu~ka. This is done by introducing a new family of (mesh

dependent) norm s wi th  respect to which the above mentioned mixed methods (Ciarlet—Raviart ,

IIerrmann-Miyosh~ , Herrmann—Johnson) are stable. Once the stability condition has been

checked and the approximation properties of the subspaces V
h 

and W
h 

have been determined

in these new norms, the error estimates in these norms follow inunediately from the abstract

results of Brezzi and Babugka . Error estimates in the more standard norms are then obtained

by using the usual duality arg~.nuent. The results of this paper were announced in (21).  We

also note that the methods employed in this paper have been applied to two point boundary

value problems in (3] .

Section 2 containsa revie~~~f t}-c convergence resu1ts of Brezzi and Babugka . In

Section 3 we introduce and study the mesh dependent norms and spaces used in the analysis

in this paper. In Section 4 we treat three examples previously analyzed in the literature

and show how error estimates can be derived from the abstract results in Section 2, used in

conjunction with the mesh dependent norms introduced in Section 3. These examples are all

mixed methods for the biharmonic problem. The error estimates in the standard norms that

are obtained in the present paper and those obtained in (121 , using different techniques,

are the same.

Throughout this paper we will use the Sobolev spaces = Hm ( D ) ,  where 0 is a

convex polygon in the plane and in is a nonnegative integer . On these spaces we have the

seminorins and norms

• j v~ — IvIm ~ 
— C 

~ 
f J D

tr
~ 1

2dx) ’~’2

I okn o
and

— liVff
~~~ 

( 
~ I (D~\Tf 2dx)~~

’2 .

Ia I~.m 
ç~

denotes the subspace of H’5(cl) of functions vanishing together with their first

rn-i normal derivatives on r — ~0. We also use the spaces Ø in (0) — (H~ ( r n ) ’  (t he dual

space of H~(~)) with the norm on H~
”(0) taken to be the usual dual norm.

-3-
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2. Abstract Convergence ResUlts

In this section we review certain results on the approximate solution of sad’fl’-

point problems.

Let Vh and 
~h be real Hilbert spaces (indexed by the parameter h , where ~ - I

with norms II •Il~, and ft •lI~ . respectively, and let a
b
C...) and b

h
(,

~
) be bilinear

• h h
forms on x V

h and (P
h 

x , respectively. We suppose

(2.1) ia h (u ,v ) l  I~~l1’~~V lIv fl (P V u ,v €

(2.2) Ibh(u,~ )I < K
2
IluIl~ ((~~.(

(V 
V ~ € 

~h’ 
V ~ €

where and K2 
are constants that do not depend on h

We consider the following problem , referred to as problem P

• Given f € and g € 
~h 

find (u ,tJ~) e V~ x Wh 
satisfying

(2.3a) ah(u,
v) + b

h
(v,

~
i) = (f,v) V v E 11h

(2.3b) b
h
(u.

~
) — (g,’p) V ~ C

where C . ,.) denotes the pairing between and its dual space V1~ , or between

and Wh .

We shall consider this problem for a subclass of data , i . e . ,  for (f ,g) € 0 , where -

a subclass of Vh x CU
b . We assume that P has a unique solution for all (f,g) - 0

We are interested in the approximate solution of P . Toward this end we suppose ~:e

are given finite dimensional spaces c Vh and Wh 
c , 0 < h < 1 , and consider

following problem, referred to as problem 
~h

Given (f,g) s P , find (u
h.~h

) € V
h 

X W
h 

satisfying

(2.4a) a.fl(uh
,v) + b~(v~~)~) — (f,v) V v € V

h

(2.4b) b
h
(u
h,~
) — (g,p) V ~ €

We now regard uh as an approximation to u and as an approximation to

- 

• 
Regarding problem we suppose

Iah
(u,v) I

r (2.5)  
~ y

0 
H u H ~ V u € and V h

where y
0 

> 0 is independent of h and {v € v
h
:b
h
(v ,c) = 0 V Wh~~

and

—4—
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Ibh(v ,~
)I

• (2 .6 )  sup > k0II~ lI~, V W~ and V h
v€ V II v II V h

h
where k0 > 0 is independent of h . We now state the fundamental estimate for tb.-

errors u — Ub and ~ —

Theorem 1 (Brezzi (5)). Suppose (2.1), (2.2), (2.5) and (2.6) are satisfied. Then

Problem 
~h 

has a unique solution (uh
,l
~h
) for each h and there is a constant C

independent of h , such that

(2.7) ( Iu —u ht( (P + 
~~~~h 1 w -c C( inf H u —X U ~~ + inf — r ~H .~ ) V h

h h h h

(2.5)—(2.6) is referred to as the stability condition for this approximation method.

In many applications of Theorem 1 the spaces V
h 

and and th= forms ab and

do not depend on h , i.e., V
h — V and CU

h — LV are fixed Hu bert spaces and ah a

and bh — b are fixed bilinear forms and V x V and V x LV . The space and Wh
typically are spaces of piecewise polynomials with respect to a triangulation Th of some

domain by triangles of size less than or equal to h and , of course , depend on h . In

the applications in this paper , both the spaces 
~h ’ CUb and Vh . Wh depend on h , i . e . ,

are mesh dependent; the constants K1, K2 ,  y0 , and k0 , however , will be independent of h

(cf .  [2, Cp. 7 ] ) .  In these applications the solution (u, i~) of (2 .3 )  is independent of

- and lies in Vh 
x Wh for all h . Thus the estimate (2.7) yields convergence estimates

for u—% and *~ Ph . provided the families (v h
) and {W

h
} satisfy an approximobilitv

ase%snption . For typical finite element apnlications this would involve the assumption that

— iflf Il u—~ H~~ and inf II~4i—iill~ tend to zero as h tends to zero .
X E V h h f l E W h h

-5- 1
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3. :-~es~. ~e~-endcnt ::orm~, and Snaces

In this section we describe the mesh dependent norm s and spaces we shall use in the

paper. Let be a convex polygon in the p lane . For 0 < h < 1 we let Th 
be a t ri-

angulation of • by triangles I of diameter less than or equal to h . We assume the

family of triangulations {T
h
} satisfies the minimal angle condition . i.e., there is a

constant such that

h
(3.1) max V h

T Th T 
—

where hT is the diameter of T and CT is the diameter of the largest circle contained

in T • and is quasi—uniform , i.e., there is a constant t > 0 such that

(3 .2 )  -r V T € and V h .

Let r • u ~T . We defineh T € T h

2 . 

{u 
~ 

H 1(c~) : u I 1 € H~~(T) V T 
~ 

Tb
)

and on 
~h define the norm

II uII~ h 
= ~ IIu II~ ~ 

+ h 1 
~

, 

~ 
3u 2d ,

TETh

where, if T’ — ~T1 n ~T
2 

is an interior edge of the triangulation Tb . we set

— + , where -2 is the unit normal to I’ exterior to T3 , and if

boundary edge of Tb , we set 3 

~~‘T 
— -

~~~~

On H (~) we define

II u II~ h 
= 

~ Ju I
2dx + h f u!

2 ds
rh

and then define to be the completion of H1()) with respect to )I .PI
~ h 

can

be identified with L2
(c) • L2(rh) .

we note that norms similar to and 
~~

‘ 2,h 
have been used in a different

r.ianner in Douglas—Dupont (3.1] and Thomas 1261.

For k - 1 a fixed integer we define

(3.3) S
h ~V C C0(~): v ,1 P~ V T € Tb

)

where is the space of polynomials of degree k or less in the variable x1 and x
2.

:~ ir~ clear that S
b 

is contained in H~ and

—6—
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We now prove several le~~ as that are fundamental to the analysis of this paper.

• These [roofs are all closely related to the ideas used in the proof of the Bramble—Hilbert

l~ nrna [41. prior to stating the first of these lenunas we describe the notation we will

use and state some well-known results that will be used in thc proofs.

Let T be an arbitrary triangle and let ~ be the reference triangle with vertices

(~~.O), (1,0). and (0,1). Then there is an invertible affjre mapping FT
(
~
) = B

T
X + b1 =

F( X )  = Bx + b such that P = F
T
(T). This mapping leads to the correspondence x ~ T x =

€ T between points in T and points in T and the correspondence (‘~:!I’ *R)

Cv — v o F;
1:T -. R) between functions defined on ~ and functions defined on I . Note

- ; that ~ (x) = v(x)

- It is easily seen that

(3.4) (~7 v) (x )  = (B l
)
t
(V.v) (F

1 (x ) )
• x x

If = Cx) denotes the outward unit normal to ~T at x and v = ~(x) is the outward

unit normal to ~T and x , then

(3.5) u(x) (B~~)
t 
:(X) B

t v(x)I

where t denotes transpose. Let the sides of P be denoted by T’, i=l,2,3. Tidenotes the

area of T and 1~!I denotes the length of T~. The sezninorms tV I~~ and vI t~~ 
are related by

(3.6) 
~~~ i det B j_ l/2 II~

and

( 3 . 7 )  V~~. ~~. Idet B 1/2 13~ 1
Q

where 11311 is the norm of B induced by the Euclidian vector norm (cf . t8 , Theorem
• 1 3.1.21). We will also use the estimates
• h h

(3 . 8 )  II BII < —
~~ , IIB 1U <

OP

(cE. [8, Theorem 3.1.3]). We also note that det B) — . Finally we remark that

there is a constant C — C(T) such that

(3 .9) inf 1h + 
~~k+l ,~ ~ 

CIu I k+l T  V ~ H~°’~~(T)

(Cf. [8, Theorem 3.1.1)).

-7-
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Lemma 1. Th ere is a Constant C such that

II U II O b  ~ ClI ull~ V U S

~~~~~~~~ It is sufficient to show ~~~~~~~

I’. f u 2ds CIIuI)~ V U S
brh

Now f 2dx~~ ’~
2 and (j ~~)

2
~J~ + f t l

2ds)1”2 are both norms on the finite dime r~a~
- 

I 
-

space Pk
(T) — {p~~ p € 

~~~ 
and hence there is a constant C( T)  such that

4 u 2dS < C( T )  f ~~)d~ V u Pk
(T)

Let T € Tb and suppose T is the image of T under the mapping F(x) = Bx + b

using (3.1) , ( 3 . 2 ) , and (3 .6) , we see that for any u s we have

f u ) as =~~ f u d s
3T i=l T~1

f 
~~~~~~~

i

< C(T) max T~~ ~— 
i T

< C(’~) max )~~~))det H
1 f u~~ dx

max :;I
~~~

1I utI
O T

c (‘i) 4 ‘~ 
h,1~ 

l ull 2
— iT 012 0,T

c(~f) 4!~~ h~ 2 
~ Ilull

2
— iT 0T h1 o,T

~ C(~) oh;
’ nuIl~~,~

~ C(T) a r h ’IIuII~~~ .

-8-
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Therefore

h f u 2ds < h 
~ 

f u~~ds
Tt T h ~‘r

C(~) a -r ~ l l u l l ~ IT € T h

a~ II uIl~~, 0

for all u c S h

• Lemma 2. There is a constant C such that

ll ull 2 , h I C h
1llu(l 1,0 

v u c

Proof. Since (Th
I is quasi—uniform it is well-known that

:1 TET
h 

Iiull
~~,T ~~

C Hull~ 
u - -

Thus it is sufficient to show that

h 1 f )j ds 
~ 

C h
2 ll u ll ~~~0 ~ U 

~
‘k

rh

(j  i3I 2cix + j v .ii 2d~ ) 1”2 and ll~~ll - are both norms on the f in i te  dimensional

I 3T x l ,T

space 
~k ~ and hence there is a Constant C (‘i) such that

E (~ ) 
~~~~ 

V u ) 2ds < C( ~ ) Il T~lI~ ~, V ii € P
k

(T)

Clearly E (u  + p) — E (u )  V p E . Thus

E C u )  — E (u  + p) CCI) Il~ + pll~ ~ ‘~ 
p p

0

and hence , using (3.9), we have

ECU) < C(T) inf lu + pil 1 •

peP0

Now let T and assume P is the image of T under the mapping F(x) = Bx

Then , using (3.1), (3.2), (3.4), (3.6) , and (3.8) , we see that for any u c we have

- ~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~ -~ • - 
:-

~~- • ~~~~~~~ •-~~-~~ ~~~~~~~~~~~~
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~~~~~-. — —~ ~~- ~“‘~~~‘ - ~~~~~~ -r ”r

f 2-~~ds — 

~~ ~, (
x o j t

~~~~~l
2d5

~ 
( ( B ~~ )~~(V =u )  (P~~~(x )) l 2ds

• — 1 2  ~~2 -
< lB 1 max 1.’ f ‘V~u l  ds

~

I C(T)llB~~ll 2 max IT~ I ~~~~~

I C(~ ) ) lB ’ll 2 max !T~~~det B)
1 ll Bll 2 u~~~1 • -

I C(T)
[~~~~J {~~~)2 ~~~~~~ u)~~~

< C ( T ) f — ~1 {
h 4 ~~j~j  .!_ u 1 2

— 

~~ 
‘~T ~ ~

‘I 
•

< C ( T)  
hj .)2 y4~iLJ~ h~~ u

2
— Pj . ft iT 1,1 1

Therefore we obtain

h ’f 
~~~2 

~ h~~ f 3u 2 ds
rh TCT

h 31

C( T) 
Tr T ~ 

h 2 u~~~1

• 4 —2 2
- I C(T) o h u)1 ~

., .

• This o ripletes the proof.
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Lemma~3. There is a constant C such that

~~
Sh 

llu_
~

:ll O,h 1C 
h~ i u l ~~~

for all u H1~~ ) and all h , where 1. I r and 1 I ~ I min( r ,k+l)

Proof. We define two interpolation operators that will be used in the proof. For

H~(T) let I~u ~ 
9k 

be defined by

• f  ( u— 1 1
u)f dx O

f (u - JTu)f dx — 0 V f € 
~k-2 

and V sides I’ of C •

and 
-

u(a) — (7
1
u)(a) = 0 V vertices a of P

Then for u s H2(~2) we let ‘h 
U C Sb be defined by - •

(1hu1~~ T
T
(U
~~~
)

For u e H
1
(~3) we define the interpolant in a different manner. Here we consider

only the case k — 1. Let the vertices of T
h 

be denoted by z1
,... ,z and let

w ,.. . ,w be the basis for S defined by w . (z .)  • d . . Set S. — (supp w .) n 01 m h

and let S. be the area of S~ • Now , following Cl6inent [101 we define 1ht1 by

u dx
• ~in 3 w.
ThU L 3

j~ l j

We first cQnsider the case r > 2 and 9. > 2 • In this case we obtain the desired

- result by estimating lu - ihUll o b  . By the standard approximability results for S
b 

we

have
I u - Th

1
~ 

dx IC

Thus it is sufficient to show that

f )u — T
hul

2ds ~.C h
2
~~~ Iu I~~,0 •

— 11—
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Suppose u c H
9.(T) and set ECU) f ~i~i — Tj.u)~ ds. By the trace theorem and

the Sobolev imbedding theorem we have

E(~i) I C(T) ll~ill~~~~

and since ECu + p) — ECu ) V p a P~~ 1 , 
we thus have

E CU ) I C(T) inf ll& + pll~~~~ I C ( ’F)
p e P 9._ 1

Now let I € Th be the image of 1’ under the mapping F ( x)  - Bx + b

Then

f l u  - Z1ul
2ds ~ ~i 1 lu - I~~ J

2
)T1 d~

maxIT~ J L I~ 
- l~~ ) 2d~

II! ~~~ )T~ ) 
C(~))u)~~~

i 
p

I max IT 1I C (T) ldet B ! 1 lI B Il 2
~~!u l ~~ 1

4h h 29.
• 1 1 2

10(T))’! —i ~~i r Q 1 I

< 
c(’~)I )~ ~ 

2 2 t—l 
u 

2
— fl 

h~
iT

—12 — .•
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Therefore

I lu — Ihu )
2ds < 

~ 
f u — ~~~~

r PET aT

I c~~) 
2 h

29.1 
~ 

u~~
TCT

h

2 29.—i 2
— C(T) o h

This completes the proof for the case r,Q. > 2

For the case r > 2 and 9. a 1 or r — 9. = 1 we estimate I lu - J
h
Ull o h  

Cl~ment

(10) has shown that

— 1h’~~0 
1~~

By a slight modification of the proof in (9] we obtain

(h f lu — IhU l d s) 1• C h ) u ) ~
rh

The desired result now follows.

Lemma 4. There is a constant C such that

inf ftu ~~~ 11 2 h I C  h lu 9. ~XCS h nH O 
‘

for all u € flr(0) n H~~(0) and all h , where 2 1 r and 2 1 ~ I min (r,k+1).

_____ 
Let be defined as in the proof of Lemma 3 . Note that T hu Sb ~~

U C ~1
r n E~ . Since , by standard approximability results we have

Lr Hu -- Th
UI!2,T IC 

h
2t 4 

lu~~~0
,

it is sufficient to show that
— I u) 2

h ds 1C h
2 9 . 3  

u I ~~~~

We next observe that

I~lv~u — 7~j) 2ds < C(’i ) U l ~ 1 V u  H~
’ (T)

• aT 
-,

Now let I € Tb 
be th. image of T under the mapping F (x) — 3* + b .

‘it

-13- r
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Then

:1 r~— Cu — 11
u) 2ds = 

~~~ ~
°x~~ 

— T~ u ) J t v( x) 2ds

• 
~ 
I I (B 

t)
t 

V- (u — I-~ 
2ds

X I
1

I 
~~ 4, (B l ) t (t~ — T.~~) (

~) 1
2

1T1 ds

I 3
1

1 2 max IT! f j v (u 7,~ 
2ds

I C(~)la~~ll 2 max lT! IIt !~~

I C(.~)f_i } (h }

29. 

-f~j- (u i ~~,T hI

C(~ ) TI 4 4 4 2L— 3 2
I 2i 0 h

r ui 9.1
iT

Therefore

a Cu-u

~ ~ 
P 2 ds I ~ I I -

~~~~ C u —  11
u) 2 ds

TCTh ar -

< C(~ ) ~~ h2~~
3

lu i~~0 ,

which completes the proof .
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4. Applications

In this section we analyze three mixed methods.

a) Ciarlet-Raviart method

Consider the biharmonic problem

in ~

(4.1 )  1 = 
~~~~ 

= 0 on r =

-• where is a convex polygon in the plane and g is a given function. If g ~ H
2(0)

then there is a unique solution -
~ € H~ ((3) of (4.1). In addition the following regularity

result is known for this problem : If g a H~~~(Q) , then ~ € H3 (C3) 0 H~~(0) and there is

a constant C such that

• 
— ( 4 . 2 )  l l ’~l l 3 I c9g!! _ 1 V g € H

1(P.)

Using the well—known correspondence between the btharmonic problem and the Stokes problem, - •

this regularity result can be deduced from the regularity result for the Stokes problem

proved in ( 181 • We assume g € H 1(0) throughout this section .

We now seek an approximation to the solution ~ of (4.1) by a mixed method, i.e . ,

we introduce an auxiliary variable Cu S —~~~~ for the method of this subsection) , write

(4.1) as a second order system , cast this system into variational form , and then consider

the Ritz-Galerkin method corresponding to this variational formulation.

Thus we let u S —&~) and write (4.1) as

u = -g

(4 .3)  ~~~+ u = O  in ~3

• ‘~~a~~~~ = O o n Fav
The desired variational formulation of (4.3 )  is obtained by multiplying the 1~~ equation

in (4 .3)  by ~ e H~ n H~ , the 2~~ equation by v c H~ • integrating the resulting

• equations over fl • and integrating the first one by parts over each T € T
h
. By means

of this process we arrive at the following problem :

Given g ~ H 3 (2) , f ind (u , -~) x (H~ 0 H~ ) satisfying

—15—
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f u v d x -~~ f v t . :d x _ f v ( J ~~~
i ) d s = 0  V v ’ H ,

- •

(4.4 )

~ f u~~~~d x — f  u(J-~-)c1s - fg .~dx V~~ —

PaTh I h 
- - .

Using the regularity result (4 .2 )  one can easily show that if . is the s3l’~t1~ r ‘f (4.1

and u S —[‘ 4 , then (u ,~ ) is a solution of (4 . 4 ) ,  and if (u ,~ ) is a solutlon of

then 9 is the solution of (4.1) and u = —1~ . (4.4) is an example of problem P

~ect l on 2 with 
~h 

— Nh ,  
~~~

Vh 
— “ “ O,h ‘ 

(U~ — Nh 0 • l I • l l ~~ = , a)(u ,v) =

J u v d x , and

bh (u
~~

) = 
~ J ud~~dx — J u(J ) ds ,

T€ T h T
- (and with g rertaced by —g) . Here the subclass of data for which (4 . 4) is unicuel

solvable is 0 a 0 x H 1(P.)

As pointed out above , can be identifies with L2 W)  L
2
(F
h
). Under this

identification, H1(Q) is con.ider.d a linear manifold in through the mapping

~ u 
-
~ 

(T1 • U I ~, )  L..(0) • L2(Fh) .

Thus an element u — (u,~ ) € L2(fl) • L2
(r

h
) is considered to be in H 3 CP ) if U

and u l r a To be completely precise bh should be defined by

bh(u,D) ~ 
f utj’p dx — I ~ (~ ~~) ds

TE Th I rh
-

- 
for u • (u,~ ) a = L

2
(fl) • L2([’h) and ~ a H~ . Note that I .

(4.5) bh
(u ,

~
) = — f Vu • V~ dx

1 0
for u a if (13) and ~ € . We further note that it is immediate that (2 .1 )  and ( 2 . 2 )

are satisfied with constants that do not depend on h .

For finite dimensional spaces we choose = S and = Sb ~ 
H~ fl)• ~ehere E~

is defined in (3.3) . Problem thus has the, form:

—16—
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Given g ‘ H
1(~ ), find (u h .Th) C ‘ ~~ satisfyinq

f u hv dx  
Ta~ 

~ 
v~~.h d x ! v(J

~~~~~
)d x = ~~ 

V f
(4.6) 

1 

h h

~ f u~ . ,dx — f u(J -~ -)ds = — 
‘ 

~~:dx ~
T€T

h
T 

~h

Using (4.5) one easily sees that the approximation procedure determined by (4.6) is the

same as that considered by Glowinski (141 and Mercier (19 1 and further developed by

Ciarlet—Raviart (91 . Note that this method yields direct approximations to an d to

U = —A 9 (the stream function and vorticity in hydrodunamical problems).

We have already observed that (2.1) and (2.2) are satisfied . In order to apply

Theorem 1 we must check the stability condition (2 . 5 ) — ( 2 . 6 ) .

Theorem 2. There is a constant > 0 , independent of h , such that

f uvdx l

- 
. V€Z lI vIl O b  ~ 

y0 Il ull~~~ V u Z
h

i.e., (2 .5 )  is satisfied.

Proof. Using Lemma 1 we have

I f u v d x j I fu v d x !
n 

_ _ _ _ _

~~~ II II ì
V€ Z V 0,h V E Z

h 
C11v11 0

• 
= c~~ llul l 0

.
~~ c~

2 1u 1l~~~ V u € Zh

where C is independent of h . Thus (2 . 5 )  holds with ‘

~~~ 

= C 2

Now we consider (2.6 ) . Let € Sb
: f v dx = 01 .

Lesmia 5. There is a constant C1 
> 0 , independent of h , such that

I f  Vv V~~dxI
inf su~ > C

1 V b
lUS h VES h llVIl O h ll Pll 2 h  •

— 17—
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Proof . We first note that

• 2: dx l If 2v • 9: dx~
(4. 7) inf SU~ — 

I lv il  II = inf ~~~ flvll ll~ I l
~~

5h V€ S
h 0 ,h 2 ,h VC S h ~

cS h 0 ,h 2 ,h

T~is is a consequence of the fact that an operator and its adjoint have equal norms.

Given v S
b we choose : to satisfy

- I~~~~
sh

! f~~~~~. 7 r dx = f v ~~~dx V ~~~~~~~~

Letting = v and using Lemma 1 we obtain

(4.8)  1 • 9: dx = f v2dx ~ C2 llvll~~~

where C
2 > 0 is independent of h •

Now let ~ be defined by

~~ € H
1 (13) {u € H1C~1:f U dx = o}

Hf 7: • V~ dx = f V ~dx V ~ €

13

Then = 0 on F and , since 13 is convex ,

(4.9) ll
~~

ll 2 
- Cllvll 0

is the Neumann projection of ~ into and it is well-known that

(4 .10) Cl: — 

~
ll
l < ChII~1I 2 .

Let ~ be the piecewise linear interpolant of ~

Since ~ € H 2 (2 ) and 
~~~~~= 0 on F we see from the definition of 11 .1? and2 ,h

from (4.9) that

(4.11) ll~~Il 2 ,h = ll~~ll 2 -~~ dl vii 0
From Lemma 4 with k = 1 and r = 2, and (4.10) we have

(4.12) ll~ - d2 ,h I 
Cll~ l l 2 I dlivll 0

~~ing Lemma 2 , (4.9), (4.10) , and standard approximability results we find that

—18—
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ic 
(4.13) — 

2,h — ~~ h
1 : —

I C h~~ (II - ll~ - ~ ll 
~

I C  h 1( hll:l1 2 + hll~~li 2
)

I clIv ll 0
low , using ( 4 . l l ) — ( 4 . l 3 )  we have

(4.14) il:I! 2 h  ~~ II: — 

~
il 2 h  + ll~ — 

~~2 h  + ill ~!l 2 ,h

I C 3 llvll 0 ~ C3 lIVlI O h

where C3 is independent of h

Combining (4.8) and (4.14) we get

. if 7v .7: dx l 
~

_ _ _ _ _ _ _ _  
2(4.15) m t  sup - -  > — S C > 0

V€Sh :€Sh 
liV ll O, h 11’

~~2 ,h — C 3 1

The desired result now follows from (4 . 7) and (4.15)

Theorem 3. There is a constant k0 >0 ,  independent of h , such that

t- • (4.16) SUP lv ii  ~ 
kOIi:ii 2 h  a W~ and V h

- V€V
h 0,h

i .e . ,  (2 .6 )  is satisfied.

• 
• 

Proof. Let : a Wh and set e = 
~~~~~~ 

f ~~ dx . Then el  I cll~ H
0 

and ~ ~ —e 
~

By Lemma 5 there is a v
1 € such that

(4. 17) bh (v l ,
~~

) = b
h
(vl,~

) = - 

~ 
• V~ dx 

~ 
Il
~~

li
~ h ~~. 

l~~
il
~ h 

- c4ii~ ii
0

and

(4.18) llV
lJl O h  . .  cil~ ll~~,~ ~ CSil

~~
Il 2 h

Pie also know that

(4.19) —bh~
c,
~
) — f I~ :!

2dx > c6ii.~il~

and
• 

.
~~-

(4 .20 )  
~‘~~o,h IC7 ‘

~~2,h 
•

—19— -
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Now let v — v 1 
— C4C6 

: . Then , using (4.l7)—(4.20), we have

(4.21) bh
(v .~~

) .~, ll~ ft 2~~
and

(4.22) li ViiO h  I (C5 -+ C4 C7 C6
1) Il: 2 h

Combining (4 .21) and (4 .22 )  we have (4.16) with C = (C 5 + C4 
C7 C6

1) 1
.

We are now ready to apply Theorem 1 to analyze the Ciarlet-Raviart method. We L
obtain

iiU _ U
hii o ,h + 119 — 

~h~ 2 ,h I C C  m t  lu  — X ll O h + inf ll~ — 

~~~~~~X C V h 13CWh
Suppose ~ ~ ,9r (0) , r > 3 , and supp ose k > 2. Using Lemmas 3 and 4 we

obtain

(4 .23 )  ilu — u
h

il
O h 

+ 119 — 
~h

U 2,h IC h~~
’2iic ~il

5

where s = min(r ,k+l) . From (4.23) we get

(4 .24) lu  — U
h

il o IC h
S 2  11 911

In add ition , (4.23) yields the estimates

(4.25a ) ~ JU — U~~1 dS) < C ),S 5/2 Ji ijill

(4. 25b) ~ — 

~
‘h ~ 

c h~~
2 11 911

h

and

(4.25c) C f I~ ~~~ T
2d5)1”2 < C 11 911

V 5

We now derive an estimate for 119 — 
~h

11
l 

by means of the well—known dualit~’ argu-

ment. Given d a H 1
(fl) , let e be the solution of

in 13

ae9 =— = 0  on r .av

If we let w — —t~9 then from (4.2) we have

(4.26) H ell 3 + Il wiI 1 < cildfl 1
Also, from the discussion following equations (4 .4)  we know that the pair (w ,-~)

satisfies

— a
h

(v ,w) — b
h
(w,lc) — bh (v ,ø) V (v ,~~) H~ ‘~ (N~ fl H~ ) .

— 20—
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Setting v = u — and : = — ‘;

~~ 
, using the exact equ a t i ’n s (4 .4 ) , and t .€. -~~tS-

Galerkin equations (4. 6) we act

Cd , ~ 
— 

~h~O 
= -a~

(
~~ -- U

h
..) — hh (w ,. — — bh (u - ~~~~

a 
~h1’ — -~~,w — z) — bh

(w — z , — — — bb (u — U:~~~ —

~ (z,~.) 
-

Thus, using (2 .1) ,  ( 2 . 2) ,  (4 .26 ) , and Lemma 3 and 4 we get

— 

~~~ 
IC(ll u — UblI o b  + ll~; — 

hH 2,h) 
ZCV °’ 

+ l~u —

(4.27)

h lldll _1 (llu — U
hll

O h  
+ Il ci’ —

Finally, combining (4.23) and (4.27), we have
I C d ,~ — 

~~ s—I
(4.28) ll~ — 

~h H l = sup Il dll IC h ll - ~(

d€H (f l) 
—

where s = m i n( r, k+l).

Estimates (4.24) and (4.28) improve on those in Ciar let—Raviart [9] . Scholz [23

obtained (4.24) under the assumption that 1 is smooth. (4.24) and (4 .28)  were alec

obtained by Falk—Osborn (12]. Note that the app~~ ach of this paper does not y ield error

estimates for the case k=l for the method studied in this subsection (and also for th~~

method of Subsection b); for this case the reader is referred to Scholz (24]. Using 
‘ 

-

La—estimate techniques Scholz (241 has shown that ll U_U
h

l l
O 

• 0(h~~
3”2 ) under d i ff e r en t

assumptions than those made in ( 4 . 2 4) .  In (251 it is shown that in any subdomain

13,., cc 13, ll u—u.~I l - is of “nearly ” the same order as ll y— ~ I -,  provided - is su f f i —
h O ,.

ciently smooth. Finally we note that our approach allows the treatment of the case vherc

g € (H~ ) ’  — H 1 c~) .  For example , we could treat the case where g is the Dirac func-

tion , which corresponds to a concentrated load in plate theory .

Estimates (4 .25 ) are new for this problem. (4.25c) provides an estimate on “e rate

at which the jumps in the normal derivatives of Ch across interelenient boundaries

converging to zero and also contains the estimate

ds < C h~~
3”2 II ~‘l l

r 3” —
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b) Herr nann-~~i . -  : j  m~ th od

- ~~~--:r ion we consider another  mixed method for the approximate solution of

4 . 1) .  t~~~— ‘~.-tco d the  a u x i l i a r y  variable is the matrix of  second order partial

r1vat c.v~-- ~f . .

For and v — C v . ) ,  1 < i , j  2 , with V . . H
1
(T) and V12 = V21 we

set

M (v) = L- 
1,)=i ~~ ~

and

• M Cv) = 72 V . . V . T .
- i , j=l  ~~ ~ 1

• where v — Cu , - ) is the unit outward normal and T = CT ,T ) = (-
~~. , — J  ) is the unit

1 2  1 2  .~ 1

tenqent along -T . We note that

(4.29) ~2 f (V - + —.~~~ - —~~~— )dx = f (M (v) -~~~- + M (v) ‘~~~~ )ds
- . ij  1x . •-x . ~x . ‘x . U - -0 -

~~~ 
-

1 3  j 1 ~T

for all H2 CT). On

V
h

(2) {v (v~~) , 1 1 1 2: V12 
= v2 1, V .. € H1CT ) V T T

h 
and

:~~(v) is continuous across interelement boundaries}

we define

l!Yll
~~h 

= 

~i,j f 
l v . .~~

2dx + h 
rh 

IM (v) I
2ds ,

where , on an interior edge ‘r~ = ~~ ,~ ~T
2 of we set MCv) = M 1CV ) = M 2(V)

and on a boundary edge T’ of Th , we set M (v) = M (v) . Then we define

to be the completion of 
~~ 

with respect to l!yll
O h  

. It is clear that

~..3 0)  “ vii < (~~~. , liv . . 11 2 ) l/2
- 0,h — 1,3 i j  O , h

for all v If1 C .) = {v = (v~ .) ,  1 < i,j < ~~v = V , V .. H1(PH . When we use the
- - j j  — — 12 21 ij

norm 
~~~ h it will be clear from the context whether we are applying it to scalar-

valued or matrix-valued functions. As in Subsection a we let (t~ = n . Then the

mixed method studied in this subsection is based on the followinq formulation of C4.l)

-22-
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Given g ~ H
1 (c~ . f i nd (u , ) € t

~h 
‘
~1i 

satisfy ing

I u . .v . .  dx + I - f v . .  dx + f M ( v ) J - ~ -- ds = 0 V V - V
13 ~~ ~= T 13 ax .~~x . - ~~U - h

1 ) 1 h T 1 3  h

(4 .3 1)
2 2 -

— ~~~ ~~~~~~~~~~~ 
dx -I- f M (u)J~~ -ds =— f g:dx V : -

• i ,j=l T
~
T
h 

‘
~‘ 1 7 h

Using (4.29) we can easily establish the relations between (4.1) and C4.31). If is
2 ,

the solution of (4.1) and U ., a , then (u,L) is a soluti o of (4.31), and if
13 ~~~~~~1 3

Cu ,.) is a solution of (4.31), then is the solution c-~ (4.1) and ti . — — •

- 17 ~x x .
1 1

(4.31) is an exarnole of problem p with and 
~h 

as above ,

a (u ,v) = 
~~~ 

. f u . v . . dx• h - - 1,3 Lj 13

H anc~ 
•

hh
(U ,:) = - J u~~ 

~~~~~ 
dx + 

Th 
~ C t ~) J - ~~. ds

Letting 5h be as defined in (3.1), we consider the approximate problem 
~h 

with

V
h 

a = (V
11

) :v 12 V21, V~ . ~

and

Wh 
= 5

h 
rt

With this choice for the forms a
h 

and b
h 

and spaces V
h 

and W
h . 

problem

describes the Herrmann-Miyoshi method (15 ,16,201 . Note that with this method we obtain

direct approximations to c~ and (the displacement and moments in elasticity

• problems).

In order to apply Theorem 1 we must check (2.1) , ( 2 . 2 )  , (2.5), and C2.6) . (2.1)

• . and (2.2) are immediate. In light of (4.30), the proof of C2.5) is similar to the proof

of (2.5) for the method in Subsection a. Finally we consider (2.6). Let : W
h 

be

given. By Theorem 3 we know there is a v a Sb such that

f .v • 7-: dx ,~, 
ll
~

l l
~~h

and

• :vH
~~~ ~~~ ll:l) 2 h

—23—
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• Now let V = ( 
~ ~ J . We immediately have v wh

bh (V,~
) = 

i~j 
f 

~~~ 
dx

= f Vv • V dx

2
• 

~~
-

and

HvJlO h  ~ i,j
h1V
ij~~~.h~

”2 I ~ cil~ U
2 ,,,

This proves (2.6).

We are now ready to apply Theorem 1 to analyze the Herrmann-Miyoshi method. This

application is essentially the same as that in Subsection a. We use the approximabillty

results in Lemma 3, as modified for matrix—valued functions with the aid of (4.30), and

in Lemma 4. We will just state the results.

Suppose 9 € H (13), r > 3. Then

(4.32 )  — 

~~~~~~ 
+ 119 — 

~hH 2,h 1~~ h~~
2lI 9ll 5

(4. 33) il~ — 

~h
11l IC h~~

1 11 911

• where s = min(r , k+l). From (4.32) we obtain

(4.34 ) — 

~~~~ 
IC h~~

2 11 911
- 

Estimates (4.33)  and (4.34) improve on those in Brezzi—Raviart 17) . Rannacher [2~~

recently obtained these estimates for the case k = 2. Falk—Osborn [12) also pro~’ed

these estimates. We further note that (4.32) contains additional information corres-

ponding to the mesh dependent norms (cf. (4.25)).

—24—

-C-

_ _ _ _ _  

1•
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



__
~~~~~

__
s~~~ — ~~~~

-=-- •—— — -—=- -‘ - --- 
—~ —.~~--—-~ — —

• • ~~~~~~~~~~~~~~~~ -~~~~ • 

~~~~~~ ~~~~~~~~~~~.

• —-

c) Herrmann—Johnson method
- 

In this subsection we consider a further method for the approximate solution of (4.!~

• in which , as in the case treated in Subsection b , the auxiliary variable is the matrix

of second order partials of 9 .  Also as in Subsection b , the method is based on the

variational formulation (4.31) (the spaces Vh 
and (V

h 
and the forms ah 

and b
h 

are

the same as in Subsection b ) .

We now consider the problem 
~h 

with

V
h

= ~V a V,0: ~~~ 
€ 

~k-l V T a  Th ~
and

N
b 

a Sh 
fl

• This choice leads to the Herrmann—Johnson method (15,16, 17] .  Note that this method

differs from the fferrmann~Miyosh i method Only in the choice of the finite dimensional

space

• This example has certain special features which allow an analysis that is rather

different than that employed in the previous two examples . These special features involve

the existence of two particular projection operators denoted by 5h and . We turn

to this now .

iT is defined as in (7 , Section 4 1. For v = (v . , )  with v , .  a H1(T) and v =
h ‘ i.j 12

V21 
we define iTT

! a (w~~) with w~~ E 1’k-l 
and w12 = w21 by

• J M (V — sTv)f ds — 0 V f a 
~k—1 

and for each side T’ of T
• • I

(4 .35)

f (V~1 
— (iç~v)~~~1f dx — 0 V f 

~k— 2

- - 

By Lemma 3 in 16], IL1~
V is uniquely determined by (4.35). Now for v a 

~h we def in e

C1Thy)~ 
— )

-25-
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Since we can write

bh
(y s~~

) — 

T
~~h

i.j 1 ~~~~ 
~x a ~ 1 

dx + M
~ 

Cv) ~~~ds}

it is clear that

(4.36) bh (v — iT
h 
v,-p) — 0  V ~ a Wh

• Concerning the approx imation of y by Wh v we have

Lemma 6. Suppose V a (H r 2
(D)1

4 
n , r > 3. Then

• ( 4 .37 )  l I w h ! — 

~
0
0,h 1c h~Ilvli~

for 1 1 ~. < min(k , r—2 ) .

Proof. In Lemma 4 of (7] it is shown that

lI~
T h V — yui~ 1C h~ Ii vil~ 

.

Thus it remains to show that

(h f IM(1r
hy — y) l

2ds)1”2 IC h
t (vii .

• rh

Let T a T
b and assume T is the image of T under the mapping F(x)  = Bx + b.

Given a matrix valued function w(x) on T we set w(~ ) = C w (F(i)) C~ , i a ‘F , where

• C — (Note that the correspondence between (matrix valued) functio n s on ‘F and on T

is different than the one introduced in Section 3.) Recall that v — Ct ,3IB t v j  ( ( 3 . 5 ) ) .

Then we have

• I 
M ( V  — 

~~~~~~~ 
2ds = 

1~ 
M(v — 

~T
y
~ 

2ds

t 2
= ii I Iv Cy — it~V ) V I  ds

= ~ C B(v - 1T~v) (p l ( x ) ) B tCt
v ( I B

t
vj

4ds

I ii Bii~ maxIT~ l f  M
~
(v_s

Ty)j
2ds

I C(T)hT ~~~ I V ’ i ,T

—26— /
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I c(T)h,,, llBll
2
~~

4
~~ il CIi 4Idet a l ”1’ I’: I~~T

• ~~~4 - 6• CCT)h,~, 1T14 
h
2 ul 2

I 2U+2)

• Hence

h f M(v - 
~~~ 

I
2ds I 

~

‘
T h 

f M
~(! 

— iT~~y) I 2ds

h

I C h
2L v I ~ ,13 .

This completes the proof.

The second projection operator h 
is the interpolation operator introduced in

Section 3. As in the proof of Lemma 5 in (7] , for y a and p € ~2(13) n H~ (13) we

can write 2
~ V . .

(4.38) bh Cv s~~) =  —
~ ~ I ~ ~ dx + ~ fA (T ’ ,v~p ds + ~ B(a ,v)~~Ca)
‘F ‘~~ T i j ‘F’

~~
1
h
’F’ aeJ

h

where ‘h 
is the set of all sides of the triangulation T

h~ ~h 
is the set of all vertices

of T
b 

, and A (T ’ ,v) is a polynomial of degree less thai’i or equal to k-2 in the

2

variable a . Since for v a we have a 
~k—3 and A(T ’ ,v) ~ ~k—2 ’ it

follows from ( 4 . 3 8 )  that = T
h 

-p , as defined in Section 3 , satisfies

(4.39) bh
(v, l.~ ~ — ~i) — 0 V V a V

h

Now we are ready to derive the error estimates . First we estimate ilu — Uhil o

• Subtracting (2 .4a ) from (2 .3a) we obtain

(4.40) a.1~
(u - u.~~v) + bh Cy ‘ ~ •h~ 

= 0 V y a Vh

Suppose v a Zh {w a Vh :bh (w ,~
) — 0 V ~ € w.~}. Then , from (4.39) we see that

bh
(v

~~
) — bh (v , Eh~

) — 0 for all ~ € fl
2(13) C H~~(Q) . Hence from (4.40 ) we have

(4.41) ah C~ 
- 

~h’~~ 
— 0 V y e Z

h 
.

Subtracting (2 .4b) from (2 .3b ) and using (4.36) we see that

• bh
(ir

hu - ~~~~~ — bh Cu — u
h .IP) — 0  V ~ a W~ ,

i.e., — a Thus, recalling (4.41) ,
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iil ~ - ~hH O 
- ah (u 

~~~~~~ 
- 

~~

ah
(u — — 

~~ 
— -

• = a h C u = u h . u - i r h
u)

I Ii — ‘
~h

11 
O~ ~ 

— ir hUil 0

and hence

- (4.42 ) - 

~h~ 0 I Ii IT
h
U — Ull o 

-‘

Suppose now that 0 € Rn 0.), r > 3 . Then f rom (4.42) and Lemma 6 we have

• (4. 43) ilu — Uhil O < C  h
511 911 2

• where s = mm (k,r—2).

Now we estimate ~ 
— . As in Subsection a we can write

(4.44) (d,iJi—91~
)
0 

= _%(u=u
h,
w_z) — b

h
Cw_Z ,9=Oh

) — b
h(u—%,8=u) V (Z ,~~) a

where B is the solution of

~
2O d a L

2 
on 13

B = _ _ = 0 on r

a2e• and w . — . We note that (w ,8) satisfiesij 
~
xi~

x . -

ah(w,v) + b 
(v , e)  = 0 V y € Vh(4.45) - -

bh
(w ,

~~
) = -f d ~ dx V ~ a

(Cf . (4 .31)) .  In (4.44) let z — it
h 
W and u = E

b
B . This gives

1 (4.46) Cd ,4i= 1g?h
)

o — 
h~~ 

- 
%‘ w - iT

1~
W) - bh

Cw_ w
hw ,9_4ih

) - bh
(1
~
_%,e_E

he)

We now estimate each term in (4.46).

using (4.36) , (4.39) , (4.45) , and Lemma 3 we have

• (4.47) b
h
Cw_ w

h
w,9_O

h
) I — Ibh(rwhy,9_EhO) I

• 

— Ib (w ,lJi=Lh O)

— ICd ,*_EhO)oI

I ii dli 9 E~9ii 0

I C h5 II
~

Ii
~ 

Iidil
0

- • where a — ain(r— 1,k+l) .

— 28—
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In our estimate for the third tern on the right side of (4.46) we treat the cases

k > 2 and k — 1 separately. First assume Ic > 2. Then , using C4.26), C4.39) , and

L~~~as 4 and 6, we find that

(4.48) Ibh
(
~=%,

O_E
he)! Ibh

(u_iT
h~

,e_E
ho)I

I Cii~~ wh~
ii o h il 8 Eh8iI 2,h

I C h~
”1 iiu il 5_1 hiI e lI 3

1C h
5

Il *II ,~1 ii dii 0

where a — min(r—l ,k+1) . Now suppose Ic = 1. Then ,using (4.26) , (4.31) , (4.39), and

Lemma 3 we have

(4.49) Ibh
(
~ _Uh , e_ E

h
8) I = b~ (u,8—E~ O)

=

I H~
2
*ili 0 li e—Z,1~eil 0

I C h
2ii~

29II 0Ii eli 2

I C h
2li 141(

4 
ii d11

0

Finally, using (4.26) , (4.42) , and L~~~ta 6 we obtain

(4.50) 
% (u_%,w

~
_ 1r

h
w) I I h 0 ~~~~ h~~ 0

IC h
5 ii 

~~~~ 
iidii

0

where a — min(k+1 ,r— l ).

Combining (4 .46 )— (4. SO) we have

(4.51) ii 4~ — 9hli o = sup
d€L 2 ff dll 0

< C  h 3 
ii *fl5,~,1 , a = min (k+1 ,r — l ) ,  if k > 2

and

(4.52) iIg — 14’h”O < C h2 1 41114 , if Ic — 1

~~e can also prove that

(4.53) ii ,1, — 
~h111 1~ ~~~~ H~ il , s — minCr ,k+l) , if Ic ‘- 2

1 1 $ *h” l I C h I l ij41 3 if

~~~~~~~~~~~~~~~~ ~~~~~
•
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• Estimate (4.53) improves on estimates in (7] . Estimates (4.43) ,  (4 .5l)— (4 .53 )

are given in (71, and (4.43) and (4.5l)—C4.54) are proved in 112].

Remarks: 1) As in Subsection b we could have shown that the method studied here is

stable with respect to the norm ii 11
0 h + ii 11 2 h ‘ and then obtained error estimates in

this norm . This approach would have allowed the treatment of the case when

a (H~ P — H’1.(13) (cf. the next to the last paragraph in Subsection a) .  However ,

due to the special nature of this example , more refined estimates can be obtained by

the analysis sketched above in the case when sufficient regularity of the solution is

assumed . Thus the mesh dependent norms play a less central role in the analysis of

this method than in previous methods. They are , however , convenient; their use leads

to a very natural setting for the study of this example.

2) The analysis in this subsection was based on the projections ‘h 
and and

the fact that

~ Z 1 € 1
~h 

bh
(w ,

~~
) — 0 V ~ € 14

2
(13) n

which follows from the existence of . For a general discussion of the projections

and 1h and the condition Z
h 

C Z see Falk and Osborn (12) and Fortin (131.

3) In this subsection the mesh family is not required to be quasi-uniform.

Acknowledgement: The second author would like to thank 14. Falk for several helpful

discussions on mixed methods .
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